Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 368: 466-480, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452820

RESUMO

Physiological or pathological hypoperfusion of the placenta is one of the main causes of intrauterine growth restriction (IUGR) which poses a significant risk to the health of the fetus and newborn. Tadalafil, a 5-type phosphodiesterase inhibitor, has previously been found to improve the symptoms of IUGR in various clinical studies. Unfortunately, its clinical utility is hindered by its limited water solubility, rapid metabolism, and lack of specific distribution in target tissues rendering tadalafil unable to maintain long-term placental perfusion. In this study, iRGD-modified tadalafil-loaded liposomes (iRGD-lipo@Tad) featuring a size of approximately 480 nm were designed to rectify the shortcomings of tadalafil. The prepared iRGD-lipo@Tad exhibited superior stability, sustained drug release capacity, and low cytotoxicity. The fluorescence study, tissue slice study, and drug biodistribution study together demonstrated the placenta-anchored ability of iRGD-modified liposomes. This was achieved by a dual approach consisting of the iRGD-mediated placenta-targeting effect and special particle size-mediated placenta resident effect. The pharmacokinetic study revealed a significant improvement in the in vivo process of tadalafil encapsulated by the iRGD-modified liposomes. In comparison to the tadalafil solution, the peak plasma concentration of iRGD-lipo@Tad was significantly increased, and the area under the curve was increased by about 7.88 times. In the pharmacodynamic study, iRGD-lipo@Tad achieved a continuous and efficient improvement of placental blood perfusion. This was achieved by decreasing the ratio of plasma soluble fms-like tyrosine kinase to placental growth factor and increasing the levels of cyclic guanosine monophosphate and nitric oxide. Consequently, iRGD-lipo@Tad resulted in a significant increase in embryo weight and a reduction in the miscarriage rate of N-Nitro-L-arginine methyl ester-induced IUGR pregnant mice without detectable toxicity. In summary, the nanotechnology-assisted therapy strategy presented here not only overcomes the limitations of tadalafil in the clinical treatment of IUGR but also offers new avenues to address the treatment of other placenta-originated diseases.


Assuntos
Lipossomos , Placenta , Humanos , Feminino , Gravidez , Animais , Camundongos , Lipossomos/metabolismo , Tadalafila/uso terapêutico , Tadalafila/metabolismo , Placenta/metabolismo , Placenta/patologia , Retardo do Crescimento Fetal/tratamento farmacológico , Retardo do Crescimento Fetal/metabolismo , Retardo do Crescimento Fetal/patologia , Distribuição Tecidual , Fator de Crescimento Placentário/metabolismo , Perfusão
2.
Int J Nanomedicine ; 18: 3035-3046, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37312935

RESUMO

Angiogenesis is an essential mechanism for the progression of gynecological cancers. Although approved anti-angiogenic drugs have demonstrated clinical efficacy in treating gynecological cancers, the full potential of therapeutic strategies based on tumor blood vessels has not yet been realized. This review summarizes the latest angiogenesis mechanisms involved in the progression of gynecological cancers and discusses the current clinical practice of approved anti-angiogenic drugs and related clinical trials. Given the close relationship between gynecological cancers and blood vessels, we highlight more delicate strategies for regulating tumor vessels, including wise drug combinations and smart nano-delivery platforms to achieve highly efficient drug delivery and overall vessel microenvironment regulation. We also address current challenges and future opportunities in this field. We aim to generate interest in therapeutic strategies that target blood vessels as a key entry point and offer new potential and inspiration for combating gynecological cancers.


Assuntos
Inibidores da Angiogênese , Neoplasias , Humanos , Sistemas de Liberação de Medicamentos , Microambiente Tumoral
3.
J Drug Target ; 31(5): 456-470, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36999385

RESUMO

Except for cell-surface receptors, a range of transporters have been exploited as targets for the delivery of novel anti-tumour nanomaterials. Transporters, which are essential for delivering nutrients for the biosynthesis of mammalian cells, are significantly expressed in a range of tumour types; their expression is mostly tissue- and site-specific. The unique functional and expression characteristics of transporters make them ideal targets for mediating the selective delivery of nanomaterials to cancer cells, thus promoting cell accumulation, and enhancing the penetration of nanomaterials into biological barriers before they can specifically target cancer cells. In this review, we discuss the unique function of cancer-related transporters in the initiation and development of tumours, as well as the use of transporter-targeted nanocarriers in tumour-targeting therapy. First, the expression of various transporters in tumorigenesis and development is reviewed; this is followed by a discussion of the latest advances in targeted drug delivery strategies based on transporter nanocarriers. Finally, we review the molecular mechanisms and targeting efficiency of transporter-mediated nanocarriers. This review provides a state-of-the-art synthesis of this discipline and will facilitate the generation of new concepts for the design of highly efficacious and tumour-targeting nanocarriers.


Assuntos
Nanopartículas , Nanoestruturas , Neoplasias , Animais , Humanos , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Proteínas de Membrana Transportadoras , Portadores de Fármacos/uso terapêutico , Mamíferos
4.
Drug Deliv ; 30(1): 2184315, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36883905

RESUMO

In the therapy of placenta-originated diseases during pregnancy, the main challenges are fetal exposure to drugs, which can pass through the placenta and cause safety concerns for fetal development. The design of placenta-resident drug delivery system is an advantageous method to minimize fetal exposure as well as reduce adverse maternal off-target effects. By utilizing the placenta as a biological barrier, the placenta-resident nanodrugs could be trapped in the local placenta to concentrate on the treatment of this abnormal originated tissue. Therefore, the success of such systems largely depends on the placental retention capacity. This paper expounds on the transport mechanism of nanodrugs in the placenta, analyzes the factors that affect the placental retention of nanodrugs, and summarizes the advantages and concerns of current nanoplatforms in the treatment of placenta-originated diseases. In general, this review aims to provide a theoretical basis for the construction of placenta-resident drug delivery systems, which will potentially enable safe and efficient clinical treatment for placenta-originated diseases in the future.


Assuntos
Troca Materno-Fetal , Placenta , Gravidez , Feminino , Humanos , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos
5.
AAPS PharmSciTech ; 24(1): 42, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36697935

RESUMO

The objective of this study is to develop a new hepatitis B surface antigen (HBsAg) delivery system by coating soluble microneedle arrays with mannose-modified PLGA nanoparticles (MNPs). MNPs of different sizes were synthesized. The effects these nanoparticles on the maturation of dendritic cells were studied by flow cytometry. HBsAg-containing MNPs (HBsAg/MNPs) of the appropriate sizes were coated into water-soluble microneedle arrays. The in vitro characteristics of microneedles arrays and the immune responses after subcutaneous administration in mice were studied. The results showed that PLGA nanoparticles with an average size of about 800 nm showed the most significant effects in stimulating the maturation of dendritic cells. In the water-soluble microneedle array, the targeted PLGA nanoparticles containing HBsAg were distributed discretely with a maximum distribution height of about 280 µm with a drug load of 0.98 ± 0.05 µg/mg. The drug-containing microneedle arrays exhibited excellent mechanical properties and improved biosafety. The results of immune responses in vivo showed that the subcutaneous administration of the microneedle arrays induced the proliferation of splenocyte, secreted specific IL-12 and IFN-γ, and promote the production of IgG in mice. This study verifies the feasibility of soluble composited microneedles administration in hepatitis B immunization, and provides new ideas for the development and application of non-injectable vaccine delivery systems.


Assuntos
Vacinas contra Hepatite B , Nanopartículas , Animais , Camundongos , Adjuvantes Imunológicos , Glicóis , Antígenos de Superfície da Hepatite B , Vacinas contra Hepatite B/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
6.
Molecules ; 27(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36500719

RESUMO

Crawfish can be easily spoiled due to their rich nutrition and high water content, which is difficult to preserve. In this study, the dominant spoilage organisms in crawfish which were stored at 4 °C in vacuum packaging were identified by high-throughput sequencing technology; after sequencing the full-length 16S rRNA gene, the changes in the bacterial community structure, diversity and quality (texture, flavor, etc.) were analyzed. Our results reflected that the specific spoilage organisms (SSOs) of crawfish were Aeromonas sobria, Shewanella putrefaciens, Trichococcus pasteurii and Enterococcus aquimarinus, since their abundances significantly increased after being stored for 12 days at 4 °C under vacuum conditions. At the same time, the abundance and diversity of the microbial community decreased with storage time, which was related to the rapid growth of the dominant spoilage organisms and the inhibition of other kinds of microorganisms at the end of the spoilage stage. Function prediction results showed that the gene which contributed to metabolism influenced the spoilage process. Moreover, the decline in texture of crawfish was negatively correlated to the richness of SSOs; this may be because SSOs can produce alkaline proteases to degrade the myofibrillar protein. On the contrary, the unpleasant flavor of crawfish, resulting from volatile flavor compounds such as S-containing compounds and APEOs, etc., is negatively correlated to the richness of SSOs, due to the metabolism of SSOs by secondary metabolites such as terpenoids, polyketides and lips, which can lead to decarboxylation, deamination and enzymatic oxidation. These results are very important to achieve the purpose of targeted inhibition of crawfish spoilage at 4 °C in vacuum packaging.


Assuntos
Embalagem de Alimentos , Microbiota , Animais , RNA Ribossômico 16S/genética , Embalagem de Alimentos/métodos , Microbiologia de Alimentos , Vácuo , Astacoidea , Conservação de Alimentos/métodos
7.
Cells ; 11(20)2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36291190

RESUMO

Signaling via the OX40/OX40L axis plays a key role in CD4+ T cell development, and OX40L expression is primarily restricted to antigen-presenting cells (APCs). This study was designed to assess the role of APC-mediated OX40L expression in the context of the development of rheumatoid arthritis (RA)-associated CD4+ T cell subsets. For these analyses, clinical samples were harvested from patients with osteoarthritis and RA, with additional analyses performed using OX40-/- mice and mice harboring monocyte/macrophage-specific deletions of OX40L. Together, these analyses revealed tissue-specific roles for OX40/OX40L signaling in RA. Specifically, higher levels of synovial macrophage OX40L expression were associated with the enhanced development of T follicular helper cells in the joint microenvironment, thereby contributing to the pathogenesis of RA. This Tfh differentiation was found to be OX40/OX40L-dependent in this synovial setting. Overall, these results indicate that the expression of OX40L by synovia macrophages is necessary to support Tfh differentiation in the joint tissues, thus offering new insight regarding the etiological basis for RA progression.


Assuntos
Artrite Reumatoide , Células T Auxiliares Foliculares , Camundongos , Animais , Receptores OX40/metabolismo , Subpopulações de Linfócitos T/metabolismo , Macrófagos/metabolismo
8.
Macromol Biosci ; 22(12): e2200232, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36086889

RESUMO

The development of effective and safe delivery carriers is one of the prerequisites for the clinical translation of siRNA-based therapeutics. In this study, a library of 144 functional triblock polymers using ring-opening polymerization (ROP) and thiol-ene click reaction is constructed. These triblock polymers are composed of hydrophilic poly (ethylene oxide) (PEO), hydrophobic poly (ε-caprolactone) (PCL), and cationic amine blocks. Three effective carriers are discovered by high-throughput screening of these polymers for siRNA delivery to HeLa-Luc cells. In vitro evaluation shows that siLuc-loaded nanoparticles (NPs) fabricated with leading polymer carriers exhibit sufficient knockdown of luciferase genes and relatively low cytotoxicity. The chemical structure of polymers significantly affects the physicochemical properties of the resulting siRNA-loaded NPs, which leads to different cellular uptake of NPs and endosomal escape of loaded siRNA and thus the overall in vitro siRNA delivery efficacy. After systemic administration to mice with xenograft tumors, siRNA NPs based on P2-4.5A8 are substantially accumulated at tumor sites, suggesting that PEO and PCL blocks are beneficial for improving blood circulation and biodistribution of siRNA NPs. This functional triblock polymer platform may have great potential in the development of siRNA-based therapies for the treatment of cancers.


Assuntos
Nanopartículas , Polímeros , Humanos , Camundongos , Animais , Polímeros/química , RNA Interferente Pequeno/química , Distribuição Tecidual , Nanopartículas/uso terapêutico , Nanopartículas/química , Polietilenoglicóis/química , Portadores de Fármacos/farmacologia , Portadores de Fármacos/química
9.
Int J Pharm ; 625: 122121, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-35987320

RESUMO

The great challenge in developing safe medications for placenta-derived diseases is to reduce or eliminate fetal drug exposure while still providing the necessary therapeutic effect. Rapid advances in nanotechnology have brought opportunities for the therapy of placenta-derived disease through accumulating the drug in the placenta while reducing its placental penetration. Among various nanocarriers, liposomes are regarded as an ideal type of carrier for placental drug delivery due to their biosafety and biodegradability. However, their placental retention effect with different particle sizes has not been studied. This research aimed to explore a suitable size of liposomes for placenta drug delivery. Cy 5 dye was chosen as a model molecule for tracing the distribution of three different-sized liposomes (∼80 nm, 200 nm, and 500 nm) in ICR pregnant mice. The stability, cytotoxicity, and cellular uptake study of Cy 5-loaded liposomes were performed. The in vivo fluorescence studies on ICR pregnant mice suggested that the particle size of liposomes was positively correlated with the degree of liposome aggregation in the placenta. The ratio of fluorescence in the placenta and fetus section (P/F value) was proposed to evaluate the placental retention effect of different-sized liposomes. The results showed that the liposomes with 500 nm had the highest P/F value and thus exhibited the strongest placental retention effect and the weakest placental penetration ability. Moreover, liquid chromatography-mass spectrometry analysis confirmed the reliability of the fluorescence section analysis in exploring the placental retention effect of nanovehicles. In general, this study introduced a simple and intuitive method to evaluate the placental retention effect of nanoplatforms and defined a suitable size of liposomes for placenta-derived disease drug delivery.


Assuntos
Lipossomos , Placenta , Animais , Sistemas de Liberação de Medicamentos , Feminino , Lipossomos/química , Camundongos , Camundongos Endogâmicos ICR , Gravidez , Reprodutibilidade dos Testes
10.
Front Endocrinol (Lausanne) ; 13: 878069, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35692411

RESUMO

Growth differentiation factor-8 (GDF-8) is a member of the transforming growth factor-beta superfamily. Studies in vitro and in vivo have shown GDF-8 to be involved in the physiology and pathology of ovarian reproductive functions. In vitro experiments using a granulosa-cell model have demonstrated steroidogenesis, gonadotrophin responsiveness, glucose metabolism, cell proliferation as well as expression of lysyl oxidase and pentraxin 3 to be regulated by GDF-8 via the mothers against decapentaplegic homolog signaling pathway. Clinical data have shown that GDF-8 is expressed widely in the human ovary and has high expression in serum of obese women with polycystic ovary syndrome. GDF-8 expression in serum changes dynamically in patients undergoing controlled ovarian hyperstimulation. GDF-8 expression in serum and follicular fluid is correlated with the ovarian response and pregnancy outcome during in vitro fertilization. Blocking the GDF-8 signaling pathway is a potential therapeutic for ovarian hyperstimulation syndrome and ovulation disorders in polycystic ovary syndrome. GDF-8 has a regulatory role and potential importance in ovarian reproductive activity and may be involved in folliculogenesis, ovulation, and early embryo implantation.


Assuntos
Miostatina/metabolismo , Síndrome do Ovário Policístico , Feminino , Fertilização In Vitro , Células da Granulosa/metabolismo , Humanos , Síndrome do Ovário Policístico/metabolismo , Gravidez
11.
Drug Deliv Transl Res ; 12(3): 589-602, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33860449

RESUMO

Hypertension is a common disease for human with high morbidity and mortality, and olmesartan medoxomil (OM) is widely used in the therapy of hypertension. However, poor water solubility and low bioavailability limit its widespread use. To improve the effect of OM, a ternary OM solid dispersion consisting of hydroxypropyl-ß-cyclodextrin (HP-ß-CD) and hydroxypropyl methylcellulose (HPMC) was prepared by mechanochemical method. The best preparation parameters were OM/HP-ß-CD/HPMC-E5 with mass ratio of 1:2.6:1 and milling time of 4 h. Under the optimal preparation conditions, the solubility of the ternary solid dispersion could be increased by 12 times as compared with pure OM. Due to the addition of HPMC-E5, the solid dispersion had sustained release performance with prolonged release time of 12 h. Furthermore, in vivo study demonstrated that the prepared solid dispersion could afford significantly improved bioavailability of ~ 3-fold in comparison with pure drug. Hence, the prepared ternary solid dispersion of OM may be a promise delivery system for clinical application.


Assuntos
Hipertensão , 2-Hidroxipropil-beta-Ciclodextrina , Administração Oral , Disponibilidade Biológica , Preparações de Ação Retardada , Humanos , Derivados da Hipromelose , Olmesartana Medoxomila , Tamanho da Partícula , Solubilidade , Tecnologia
12.
Int J Nanomedicine ; 16: 7875-7890, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34880613

RESUMO

BACKGROUND: Doxorubicin (DOX) is an anthracycline antibiotic that inhibits the growth of several solid and hematologic malignant tumors. Increasing the targeting ability of DOX and reducing the multi-drug resistance (MDR) of tumor cells to DOX are major aims for researchers. PURPOSE: In this study, to increase therapeutic efficiency, reduce the side effects and the MDR of tumor cells to DOX, D-alpha-tocopheryl polyethylene glycol 2000 succinate monoester (TPGS2000)-DOX prodrug micelles were developed by grafting DOX to TPGS2000 via an amide bond that release DOX in the slightly acidic conditions in tumor tissue. MATERIALS AND METHODS: The TPGS2000-DOX micelles were constructed using polyethylene glycol 12-hydroxy stearate (Solutol HS15) as the carrier. The in vitro drug release profile and dilution stability of the nanomicelles were determined. The in vitro cytotoxicity and distribution of the nanomicelles in the tumor cells were also investigated. Moreover, we explored the therapeutic outcomes using the MCF-7/ADR tumor-bearing murine model. RESULTS: The average particle size was approximately 30 nm with a narrow distribution, which was conducive for solid tumor accumulation. The results of in vivo imaging and in vitro cellular uptake assays demonstrated that the TPGS2000-DOX micelles increased the tumor-targeting ability and cellular uptake of DOX. The anticancer potential of TPGS2000-DOX micelles was higher than that of DOX, as revealed by in vitro cytotoxic assays with MCF-7/ADR cells and in vivo antitumor assays with MCF-7 tumor-bearing nude mice. CONCLUSION: TPGS2000-DOX prodrug micelles reverse the MDR of tumor cells, achieve passive targeting by forming nanomicelles, and subsequently enhance the efficacy and reduce the toxicity of DOX.


Assuntos
Neoplasias , Pró-Fármacos , Animais , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Camundongos , Camundongos Nus , Micelas , Polietilenoglicóis , Pró-Fármacos/farmacologia
13.
Ann Palliat Med ; 10(8): 9136-9148, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34488399

RESUMO

BACKGROUND: As the aging population continues to increase worldwide, the prevalence of cardiovascular diseases and muscular dystrophy/sarcopenia in the elderly has escalated significantly. Cardiovascular diseases elevate the risk of muscular atrophy/sarcopenia, which results in increased disability and mortality of patients. This study analyzed the current available literature related to the relationship between cardiovascular diseases and muscular atrophy/sarcopenia in the aging population. METHODS: The Science Citation Index Expanded (SCI-E) database was searched for related literature published between 1900 and March 14, 2021. The subject search was performed using the search terms "muscular atrophy" and "sarcopenia". The search formula was "muscular atrophy OR sarcopenia". The search scope was limited to "cardiovascular diseases OR cardiac & cardiovascular systems". All search results and cited references were exported in plain text format and Citespace software was used to analyze the publications in terms of year of publication, country and institution, journal of publication, authors, and keywords. RESULTS: A total of 1,004 related research documents were obtained, with a citation frequency of 26,705 times. The top five countries for the highest number of published documents were the United States, Japan, Germany, South Korea, and Italy. The top five countries involved in research cooperation were the United States, Japan, the United Kingdom, Spain, and Germany, however, overall, there was little cooperation between countries, institutions, and authors. A number of researchers from Germany published the most documents. The author with the most cited publication was Cruz-Jentoft et al. from Spain, which deserves special attention. Professional journals of in the field of geriatrics play a significant role in this research topic. Analysis of the keywords showed that current researchers are mainly concerned with the associated risk of death. CONCLUSIONS: The relationship between muscular atrophy/sarcopenia and cardiovascular diseases is currently a hot topic of research in geriatrics and cardiovascular disease, and further studies examining the mechanisms involved and potential prevention strategies are warranted.


Assuntos
Doenças Cardiovasculares , Sarcopenia , Idoso , Bibliometria , Alemanha , Humanos , Reino Unido , Estados Unidos
14.
Pharmacology ; 106(9-10): 477-487, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34237742

RESUMO

BACKGROUND: Postpartum hemorrhage (PPH) remains a common cause of maternal mortality worldwide. Medical intervention plays an important role in the prevention and treatment of PPH. Prostaglandins (PGs) are currently recommended as second-line uterotonics, which are applied in cases of persistent bleeding despite oxytocin treatment. SUMMARY: PG agents that are constantly used in clinical practice include carboprost, sulprostone, and misoprostol, representing the analogs of PGF2α, PGE2, and PGE1, respectively. Injectable PGs, when used to treat PPH, are effective in reducing blood loss but probably induce cardiovascular or respiratory side effects. Misoprostol is characterized by oral administration, low cost, stability in storage, broad availability, and minimal side effects. It remains a treatment option for uterine atony in low-resource settings, but its effectiveness as a uterotonic for independent application may be limited. Key Messages: The present review article discusses the physiological roles of various natural PGs, evaluates the existing evidence of PG analogs in the prevention and treatment of PPH, and finally provides a reference to assist obstetricians in selecting appropriate uterotonics.


Assuntos
Hemorragia Pós-Parto/tratamento farmacológico , Prostaglandinas/farmacologia , Prostaglandinas/uso terapêutico , Carboprosta/uso terapêutico , Dinoprostona/análogos & derivados , Dinoprostona/uso terapêutico , Vias de Administração de Medicamentos , Estabilidade de Medicamentos , Feminino , Humanos , Misoprostol/uso terapêutico , Prostaglandinas/administração & dosagem , Prostaglandinas/efeitos adversos , Receptores de Prostaglandina/metabolismo , Útero/efeitos dos fármacos
15.
J Nanobiotechnology ; 19(1): 184, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34130695

RESUMO

Gestational trophoblastic tumors seriously endanger child productive needs and the health of women in childbearing age. Nanodrug-based therapy mediated by transporters provides a novel strategy for the treatment of trophoblastic tumors. Focusing on the overexpression of human equilibrative nucleoside transporter 1 (ENT1) on the membrane of choriocarcinoma cells (JEG-3), cytarabine (Cy, a substrate of ENT1)-grafted liposomes (Cy-Lipo) were introduced for the targeted delivery of methotrexate (Cy-Lipo@MTX) for choriocarcinoma therapy in this study. ENT1 has a high affinity for Cy-Lipo and can mediate the endocytosis of the designed nanovehicles into JEG-3 cells. The ENT1 protein maintains its transportation function through circulation and regeneration during endocytosis. Therefore, Cy-Lipo-based formulations showed high tumor accumulation and retention in biodistribution studies. More importantly, the designed DSPE-PEG2k-Cy conjugation exhibited a synergistic therapeutic effect on choriocarcinoma. Finally, Cy-Lipo@MTX exerted an extremely powerful anti-choriocarcinoma effect with fewer side effects. This study suggests that the overexpressed ENT1 on choriocarcinoma cells holds great potential as a high-efficiency target for the rational design of active targeting nanotherapeutics.


Assuntos
Citarabina/uso terapêutico , Lipossomos/uso terapêutico , Metotrexato/farmacologia , Proteínas de Transporte de Nucleosídeos/metabolismo , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Coriocarcinoma/tratamento farmacológico , Coriocarcinoma/patologia , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Endocitose , Transportador Equilibrativo 1 de Nucleosídeo/química , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Feminino , Células Hep G2 , Humanos , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Nus , Tamanho da Partícula , Ratos Sprague-Dawley , Distribuição Tecidual
16.
Front Oncol ; 11: 650453, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968752

RESUMO

Increasing evidence shows that the extracellular matrix (ECM) is an important regulator of breast cancer (BC). The ECM comprises of highly variable and dynamic components. Compared with normal breast tissue under homeostasis, the ECM undergoes many changes in composition and organization during BC progression. Induced ECM proteins, including fibrinogen, fibronectin, hyaluronic acid, and matricellular proteins, have been identified as important components of BC metastatic cells in recent years. These proteins play major roles in BC progression, invasion, and metastasis. Importantly, several specific ECM molecules, receptors, and remodeling enzymes are involved in promoting resistance to therapeutic intervention. Additional analysis of these ECM proteins and their downstream signaling pathways may reveal promising therapeutic targets against BC. These potential drug targets may be combined with new nanoparticle technologies. This review summarizes recent advances in functional nanoparticles that target the ECM to treat BC. Accurate nanomaterials may offer a new approach to BC treatment.

17.
AAPS PharmSciTech ; 22(1): 22, 2021 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33389222

RESUMO

Novel cationic lipid-based liposomes prepared using an amphiphilic cationic lipid material, N,N-dimethyl-(N',N'-di-stearoyl-1-ethyl)1,3-diaminopropane (DMSP), have been proposed to enhance the transfection of nucleic acids. Herein, we designed and investigated liposomes prepared using DMSP, soybean phosphatidylcholine, and cholesterol. This novel gene vector has high gene loading capabilities and excellent protection against nuclease degradation. An in vitro study showed that the liposomes had lower toxicity and superior cellular uptake and transfection efficiency compared with Lipofectamine 2000. An endosomal escape study revealed that the liposomes demonstrated high endosomal escape and released their genetic payload in the cytoplasm efficiently. Mechanistic studies indicated that the liposome/nucleic acid complexes entered cells through energy-dependent endocytosis that was mediated by fossa proteins. These results suggest that such cationic lipid-based liposome vectors have potential for clinical gene delivery.


Assuntos
Técnicas de Transferência de Genes , Lipossomos/metabolismo , Animais , Cátions , Colesterol/metabolismo , Endossomos/metabolismo , Humanos , Lipídeos/química
18.
Ann Transl Med ; 8(17): 1087, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33145306

RESUMO

BACKGROUND: The aim of this study was to find genes with significantly aberrant expression in diabetic nephropathy (DN) and determine their underlying mechanisms. METHODS: GSE30528 and GSE1009 were obtained by querying the Gene Expression Omnibus (GEO) database. The difference in target gene expression between normal renal tissues and kidney tissues in patients with DN was screened by using the GEO2R tool. Using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) database, differentially expressed genes (DEGs) were analysed by Gene Ontology (GO) annotation and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Then, the protein-protein interactions (PPIs) of DEGs were analyzed by Cytoscape with the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, and the hub genes in this PPI network were recognized by centrality analysis. RESULTS: There were 110 genes with significant expression differences between normal and DN tissues. The differences in gene expression involved many functions and expression pathways, such as the formation of the extracellular matrix and the construction of the extracellular domain. The correlation analysis and subgroup analysis of 14 hub genes and the clinical characteristics of DN showed that CTGF, ALB, PDPN, FLT1, IGF1, WT1, GJA1, IGFBP2, FGF9, BMP2, FGF1, BMP7, VEGFA, and TGFBR3 may be involved in the progression of DN. CONCLUSIONS: We confirmed the differentially expressed hub genes and other genes which may be the novel biomarker and target candidates in DN.

19.
Drug Deliv ; 27(1): 1165-1175, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32755258

RESUMO

The endometrial injury usually results in intrauterine adhesions (IUAs). However, there is no effective treatment to promote the regeneration of the endometrium currently. The decellularized amnion membrane (AM) is a promising material in human tissue repair and regeneration due to its biocompatibility, biodegradability, as well as the preservation of abundant bioactive components. Here, an innovative drug-delivering system based on human amniotic extracellular matrix (HAECM) scaffolds were developed to facilitate endometrium regeneration. The 17ß-estradiol (E2) loaded PLGA microspheres (E2-MS) were well dispersed in the scaffolds without altering their high porosity. E2 released from E2-MS-HAECM scaffolds in vitro showed a decreased initial burst release followed with a sustained release for 21 days, which coincided with the female menstrual cycle. Results of cell proliferation suggested E2-MS-HAECM scaffolds had good biocompatibility and provided more biologic guidance of endometrial cell proliferation except for mechanical supports. Additionally, the mRNA expression of growth factors in endometrial cells indicated that HAECM scaffolds could upregulate the expression of EGF and IGF-1 to achieve endometrium regeneration. Therefore, these advantages provide the drug-loaded bioactive scaffolds with new choices for the treatments of IUAs.


Assuntos
Estradiol/administração & dosagem , Estrogênios/administração & dosagem , Microesferas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Tecidos Suporte/química , Doenças Uterinas/tratamento farmacológico , Âmnio/química , Células Cultivadas , Preparações de Ação Retardada , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Endométrio/efeitos dos fármacos , Endométrio/fisiopatologia , Matriz Extracelular/química , Feminino , Humanos , Regeneração , Reologia , Tecnologia Farmacêutica
20.
Nanoscale ; 12(32): 16738-16754, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32578659

RESUMO

Ferroptosis, a cell death path induced by the generation of reactive oxygen species (ROS), will cause the accumulation of lipid peroxides (PL-PUFA-OOH) and achieve potent tumor-regression. However, glutathione (GSH)-dependent glutathione peroxidase 4 (GPx4) can reduce PL-PUFA-OOH and antagonize the ferroptosis inducing effect of ROS. Herein, folate-PEG modified dihydroartemisinin (DHA) loaded manganese doped mesoporous silica nanoparticles (described as nanomissiles) were constructed for integrating the effect of GSH exhaustion and ROS generation. After endocytosis by tumor cells, intracellular GSH triggered the degradation of nanomissiles, which allowed the simultaneous release of DHA and Fenton catalytic Mn2+ due to the redox reaction between the manganese-oxygen bonds and GSH. The degradation would lead to GSH exhaustion, activation of Mn2+-based magnetic resonance imaging (MRI), and DHA-driven ˙OH generation. The GSH-free environment inhibited the activity of GPx4 and enhanced the accumulation of PL-PUFA-OOH oxidized by ˙OH. Furthermore, the cooperative effects suppressed tumor metastasis by destroying the structure of polyunsaturated fatty acids in the cell membranes and showed potent antitumor activity. This innovative ferroptotic therapy integrating the GSH exhaustion and ROS generation will be a promising strategy for cancer therapy.


Assuntos
Neoplasias , Dióxido de Silício , Linhagem Celular Tumoral , Glutationa , Radical Hidroxila , Imageamento por Ressonância Magnética , Manganês , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...